THEMATICAL RESEARCH FOCUS

Research area
- Electron beam lithography (EBL)
- Diffractive optically variable image devices (DOVIDs)

Excellence
- Planar relief micro and nano structures on silicon wafers and glass masks
- Laser beam shaping by computer generated holograms (CGH)
- Diffractive optically variable image devices (DOVIDs)
- Masks for photo and UV lithography and special purposes

Mission
To be highly specialized EBL team with focus on relief and multilevel structures for large range of particular applications

UP-TO-DATE ACTIVITIES

Research orientation
- Theoretical and experimental activities related to the e–beam lithography writing process (electron emitter preparation and characterization, current density distribution, benchmarking patterns, proximity effect correction, writing strategies, sequencing, partitioning)
- Theoretical and experimental activity in the field of technologies related to e–beam nanopatterning (coating process, resist development, etching techniques, evaluation methodology, technology of nano structured nitride membranes)
- Diffractive structures (gratings, Fourier and Fresnel structures, DOVIDs, laser beam shaping)
- Micro-sensors and microscopy calibration specimens

Main capabilities

Basic research
- Study and evaluation of electron scattering effects, simulation and correction algorithms
- Experimental activities related to electron emitter preparation and characterisation
- Calculation and optimization of computer generated holograms (CGH)

Applied research
- Phase and amplitude computer generated hologram structures
- Diffractive optically variable image devices
- Electrochemical and biological sensors
- MMS and MEMS, e.g. micro and nano structured free standing nitride membranes

Sub-fields of group activities
- Scanning electron microscopy – calibration samples
- Optical microscopy – resolution and calibration samples
- Microtechnology, nanotechnology
- Laser beam shaping and splitting
KEY RESEARCH EQUIPMENT

List of devices
- E-beam writer (pattern generator) with shaped beam Tesla BS600: electron energy 15 keV, field deflection up to 3 mm × 3 mm, resolution 50 nm, rectangular stamp size range 50–6300 nm (standard mode), 17–2100 nm (TZ mode), writing speed > 1 cm² / hour (stamp size 1 μm × 1 μm, area filling factor 50%)
- E-beam writer with Gaussian beam Vistec EBPG5000plusES: electron energy 50 or 100 keV, field deflection up to 0.25 mm × 0.25 mm, resolution 8 nm, beam size down to 2 nm, writing speed up to 1 cm² / hour (at beam step size 50 nm and area filling factor 50%)

ACHIEVEMENTS

- We deepened the methodology of e–beam lithography process using both the pattern generators as well as their combination. We also tuned up the technology processes with results useful in numerous application domains. Within the period 2012–2016 we published some 50 contributions in conference proceedings and journals. Within the same period we performed over 839 e–beam exposure runs.

- Technology of combined e–beam lithography patterning using writers with variable–shape beam and Gaussian–type beam. Proximity effect correction — reliability of the method for 3D e–beam nanopatterning of diffractive optical elements

![Sandwich nano-structure etched by RIE for carbon nano-cathodes growth](image1)

![Copper anode with aluminium structures producing X-rays by e-beam irradiation](image2)

![Ag and Cr stripes behaving as a filter of secondary electrons](image3)

![Comparison of four methods enabling current density distribution measurements in shaped e-beam writers](image4)

![Electron emitter tip (left) and its emission pattern (right)](image5)
We developed a method for measurement of current density distribution within a rectangular exposure stamp. Performance and parameters of this modified knife-edge method were further compared with three other methods suitable for current density distribution evaluation.

Lithographic and etching technological processes, MEMS preparation, planar nanostructures on silicon nitride membranes

Benchmarking patterns allowing visual check of e-beam patterning performance

- Vox Populi Award IMC2014
- Raith Micrograph Special Art Award 2014

Planar structures with structural colors, plasmonic structures, optical antireflective structures

Various samples for microscopy (optical, SEM, SPM, confocal): dimension specimens, bi–metal samples, defined height step sample, USAF 1951 sample (ranged from the set 0 down to the set 11)

Utility models of diffractive optically variable image devices

Apparatus for cathode processing, activation and testing was finished

Various highly specialized samples: dozens of dedicated samples were performed with both origination systems, e.g. masks for vortex beam generation, masks for Bragg fiber grating exposures, masks for seismology applications, gold finger micro biosensors, CGH annular frame set, masks for micro fluidic applications, etc.

A monograph on practical aspects of e–beam lithography techniques and related technologies was released. A miniature of this book (size 1.7 mm x 2.7 mm, 101 600 dpi) was performed with the BS600 system.

MAIN COLLABORATING PARTNERS

Collaboration with academic partners
- Brno University of Technology (Brno, CZ)
- CEITEC (Brno, CZ)
- Masaryk University (Brno, CZ)
- Tomas Bata University in Zlín, Centre of Polymer Systems (Zlín, CZ)

Collaboration with companies
- Czech Metrology Institute (Brno, CZ)
- Delong Instruments (Brno, CZ)
- FEI Czech Republic (Brno, CZ)
- IQ Structures (Řež u Prahy, CZ)
- Optaglio (Lochovice, CZ)
- Optometrics (USA)
- TESCAN Brno, s.r.o. (Brno, CZ)
- Thermofisher Scientific (UK)

EXPECTATIONS

Offers
We offer collaboration in the areas of our expertise. Custom development and manufacturing of particular planar microstructures and nanostructures, e.g. optical focusing / splitting / beam shaping elements, photolithography masks, dimension and material calibration samples for microscopy.

Requirements
We look for cooperation with academic partners as well as application partners in the fields of lithography and complementary techniques, microtechnologies, nanotechnologies, applications of planar nanostructures.

Resist pillars of planar antireflective structure. Insert: Integration of the antireflective structures in a diffractive image device

Examples of optically variable devices originated on variable-shape EBPG BS600 in TZ mode (above) and Gaussian–type EBPG Vistec (below)

Benchmarking e–beam lithography patterns based on nature inspired filling models: groove model (above), pillar model (below)